PUPPY microprocessor:

a RISC-V MCU for IoT

applications

Gabriel Gouveia Ivan Hirata
Department of Electronic Systems Digital IC Designer
Universidade de Sdo Paulo LSITEC
Sao Paulo, Brazil Sao Paulo, Brazil
gabrielgouveia@usp.br

Bruno Sanches
Department of Electronic Systems
Universidade de Sdo Paulo
Sao Paulo, Brazil
bruno.csanches @usp.br

Abstract—In the rapidly advancing field of Internet of Things
(IoT), there is a growing need for flexible and power-efficient
microcontrollers. Addressing this demand, we introduce Puppy,
a RISC-V microprocessor designed for low power consumption
and offering frequency flexibility. To ensure the reliability of the
design, a comprehensive verification environment utilizing the
Universal Verification Methodology (UVM) was implemented for
functional and timing tests. Successful logical and physical tests
were conducted following the physical implementation. Puppy
was synthesized using UMC’s 65 nm technology and is currently
undergoing fabrication. This project aims to develop an optimized
microcontroller unit (MCU) with a novel architecture to cater
to future IoT applications, enabling enhanced flexibility in IP
integration. The circuit occupies a total (including Pads) small
area of 6.68 mm?, and from the simulations we got that the power
consumption is below 14 mW at 20 MHz.

Index Terms—ASIC, Puppy, PULPissimo, low-power, logic
synthesis, physical synthesis, microelectronics

I. INTRODUCTION

HE growing adoption of IoT applications enables seam-

less connection between physical and digital devices.
Engineers design specialized microprocessors optimized for
IoT [2], minimizing power consumption while enhancing
device functionality. This energy efficiency focus shapes the
future of the connected world as IoT technology evolves.

In this context, the RISC-V architecture is gaining atten-
tion for its power-efficient optimization in IoT devices. Its
simplified instruction set and modular design enable efficient
execution with minimal power consumption, extending bat-
tery life. Customizability enhances performance in resource-
constrained environments. Being a free and open-source ISA,

This study was financed in part by: Banco Nacional de Desenvolvimento
Econdmico e Social: Smart Cities Pilots, grant no. 6.168.378; Ministério
da Ciéncia, Tecnologia e Inovacdes and Softex: SBCs Nacionais para IoT
Fase II, grant no. 01245.0101 12/2020-11; Ministério da Ciéncia, Tecnologia
e Inovagdes and Softex: Projeto e desenvolvimento de plataformas not
2.0 com técnicas de manufatura aditiva microeletronica 3D em sistemas
empacotados, grant no. 02/softex/lsi-tec/microeletronicalb; FUNDEP ROTA
2030 - Seguranga Veicular 4.0; grant no. 27192%47.

ivantakahira@usp.br catherine.pancotto@Isitec.org.br

Wilhelmus Noije
Department of Electronic Systems
Universidade de Sdo Paulo
Sao Paulo, Brazil
wilhelmus.noije @usp.br

Laisa de Biase
Department of Electronic Systems
Universidade de Sdo Paulo
Sao Paulo, Brazil
laisa.costa@lsitec.org.br

Catherine Pancotto
Chief Design Engineer
LSITEC
Sdo Paulo, Brazil

Marcelo Zuffo
Department of Electronic Systems
Universidade de Sdo Paulo
S3o Paulo, Brazil
mkzuffo@usp.br

RISC-V hardware is widely available, making it common and
secure for IoT applications. [1].

With a focus on flexibility and innovation, we proudly
present Puppy, a Brazilian loT-oriented microprocessor. Devel-
oped for the Caninos Loucos Program, an initiative dedicated
to open Single-Board Computers (SBCs) for IoT applications
[3], Puppy aims to enhance performance by offering adjustable
core and peripheral clock frequencies. This advancement in
clock flexibility empowers developers to optimize the micro-
processor’s capabilities according to their specific IoT project
requirements.

Puppy, a RISC-V microprocessor, is designed for energy
efficiency in IoT. Derived from the Pulpissimo project, it offers
diverse peripherals, memory and, with a single core fabric
controller and optional core clusters, it optimizes IoT end-node
performance. [4], [6], [5]. Despite its advantages, the project’s
internal frequency-locked loop (FLL) module restricts clock
frequency flexibility. Puppy resolves this limitation by ex-
ternalizing clock signals, providing enhanced flexibility. The
development process followed an iterative design approach,
incorporating logic, synthesis, and gate-level verification for
optimal results.

The present paper is organized as follows: Section II pro-
vides an overview of the state of the art and related works.
Section III describes the Puppy SoC. The synthesis process is
explained in Section IV, while Section V covers the evaluation.
Finally, Section VI concludes the paper. This structure allows
for a comprehensive understanding of Puppy’s development
and its significance in the field of IoT microprocessors.

II. RELATED WORK

State-of-the-art microprocessors for IoT applications have
experienced significant advancements, enhancing perfor-
mance, efficiency, and integration while exhibiting low power
consumption, compact size, and robust computational capabil-
ities [7]. These microprocessors incorporate advanced archi-



tectures like ARM and RISC-V, striking a balance between
high performance and energy efficiency.

A popular choice is the nRF52 series by Nordic Semi-
conductor [8], implementing ARM architecture, and Pulpis-
simo chips based on the RISC-V instruction set. The
nRF52840 in the nRF52 series features a 64 MHz, 32-bit ARM
Cortex-M4F processor with rich peripherals and features.

Pulpissimo chips represent the cutting-edge of open-source
processor designs for IoT applications. It offers high per-
formance while remaining energy-efficient, which makes it
ideal for devices that have limited resources. These chips
use the RISC-V instruction set. The PULP platform provides
on their website several silicon-proven projects designed in
different technologies nodes [9]. Projects like Artemis [10]
and Plink [11], based on Pulpissimo, demonstrate low-power
consumption and optimized performance in ultralow-power
IoT applications. These advancements contribute to the devel-
opment of efficient microprocessors, catering to the specific
requirements of IoT devices.

III. Puppry SoC

Puppy SoC is an implementation based on the Pulpissimo
architecture, utilizing the 65 nm UMC technology. It features a
32-bit in-order single-issue 4-pipeline stages RV32IMC RISC-
V processor. The SoC includes 8 kB ROM for boot code
storage and an L2 memory consisting of four 64 kB interleaved
banks and two 32 kB private banks. It incorporates an I/O
DMA (uDMA) for direct memory access and supports various
peripherals such as Quad SPI, 12S, I2C, UART, JTAG, GPIOs,
and a camera interface.

Pulpissimo, recently released as open source, provides a
comprehensive package including the set of IPs, top-level
SystemVerilog hardware description language (RTL level),
simulation files, and C-based runtime software, all available
for free download [12]. Figure 1 illustrates the Pulpissimo
architecture.

JTAG |

Tightly Coupled Data Memory Interconnect

Event Unit

APEB | Peripheral Interconnect

FLLs
Fig. 1. Pulpissimo architecture [12].

As previously mentioned, our methodology involved rigor-
ous testing, synthesis, and addressing any failures that arose.
In this chapter, we delve into the modifications made to the
original RTL, the development of tests, and the analysis of

parameters to ascertain their success or failure. By examining
these aspects, we aim to provide a comprehensive understand-
ing of the changes implemented and their impact on the overall
system.

A. Development

To enhance clock flexibility in Pulpissimo, we opted to
bypass the internal Frequency-Locked Loop (FLL) module and
externalize the core and peripheral clock signals. This allows
for independence from the reference signal and facilitates
easy modification using external oscillators. Two new clock
pads were added to the die to accommodate this change.
Subsequently, the synthesis process was initiated, involving the
determination of timing parameters such as clock definitions,
transition time, and delays. These parameters were specified
in the constraints file, which will be further discussed in the
subsequent section.

B. Tests

Initially, the implemented changes at the RTL level were
validated using the provided testbench and original test cases.
The logical results matched those of the original system,
ensuring the expected behavior was maintained. A verification
environment was then developed to achieve high coverage
testing, focusing on GPIOs, UART, SPI, I12C, and SRAM
modules. Tests were conducted to analyze logical and timing
behavior in both RTL code and netlists. Parameters specific
to each IP were scrutinized to verify their functionality.
Timing tests checked for setup, hold, recovery, and removal
violations. Physical verification involved using a DRC tool and
technology rulefiles to ensure error-free manufacturing.

IV. SYNTHESIS PROCESS

This section explains the procedures and techniques used in
the synthesis process for both the logic and physical synthesis.

A. Logic Synthesis

To perform logic synthesis and generate the netlist we
utilized all the RTL files that describes the submodules and
top-level, the library files for informations about standard
cells and a constraints file, that describes a series of time
requirements that the system must meet. For this step, we
used Genus, a software from the Cadence chip design support
Framework.

To determine the timing constraints, we established the
clock period as our reference point and defined values of
transition and input/output delay as a small percentage of the
clock period.

Throughout the synthesis process, we conducted multiple
iterations, consistently refining and updating these parameter
values. This approach ensured that the timing requirements
were satisfactorily met, resulting in a well-optimized circuit
design.



B. Physical Synthesis

Physical synthesis is the process of transforming a logical
design into a physical layout that can be fabricated in silicon.
For this step, we used Innovus, a software from the Cadence
chip design support Framework, in which we input the netlist
and constraints files generated in logic synthesis along with
library information of the stardard cells and technology.

1) 10 cells: In this first step we decided what 10 cells
would be used and determined their order in the die, since
it will affect routing. The 10 cells include digital signal
bidirectional pads, power pads, clock pads, corner cells and
fillers. Table I summarizes the IO cells used in this project:

TABLE I
10 CELLS SUMMARY
Cell type Number Function
Total 316 -
VDD 2 1.2 V VDD core cell
Ground 2 Ground core cell
10 VDD 2 3.3 V VDD IO cell
10 ground 2 Ground IO cell
Digital 41 Bidirectional signal digital cell
Clock 3 Clock crystal signal cell

2) Floorplaning: Floorplanning is a crucial step in physical
synthesis, involving the placement of 10 cells, fillers, welltap
cells, and macros within the core. The design includes seven
macros for SRAM and ROM modules, impacting system
routing. A rectangular die shape was chosen to accommodate
multiple blocks and maintain density. A 100 pgm margin
was left between the IO ring and the core to accommodate
the power ring placement. This careful floorplanning ensures
proper connectivity, power distribution, and optimal space
utilization in the design.

3) Power planning: At this stage, it was necessary to make
decisions about the power and ground distribution.

At first we distributed the VDD/Ground pads evenly around
the pad ring, with one pair of VDD/Ground or VDDIO/VSSIO
in each side. Then we created the power ring around the core
site for VDD and ground and added stripes for both nets evenly
inside the core. At last, we used “Global Connect” to make
the connections of VDD and Ground with the pins and routed
the power nets with the Special Route.

4) Place and Route: In this step, we made a few tests with
density blockages to avoid placement and routing congestion.
After analysing the results, we decided to place a partial block-
age with density of 75% where the layout was very congested.
This improved the routing results and minimized DRC errors.
Also, it was decided to leave sufficient space in the design to
accommodate additional IPs that will be implemented in future
versions of Puppy. This strategic decision did not impact the
tapeout cost, as two sub-blocks were already being allocated.”

5) Final Layout: After the place and route stage, we can
move to the final part of the physical synthesis, which consists
of running timing verfications, adding core fillers in order to
improve mechanical stability and reliability of the circuit and
running verifications such as DRC, Antenna and connectivity.

With a clean layout, we generated reports of parasitic
resistance and capacitances, and generated the SDF file and
netlist to run timing and functional verification. Since all tests
and verification showed no errors, we exported the layout to
a GDSII file. Figure 2 shows the final layout.

Fig. 2. Final layout

V. EVALUATION

In this section, we present the coverage rate and the results
of the tests conducted using a UVM. All the tests performed
yielded positive results, which enhances the reliability of the
final chip. Also, we present a comparison with other chips and
a summary report.

A. Tests results

We verified the design at register-transfer level and gate-
level (both for the netlists generated at logic and physical
synthesis). The tests checked the design for timing violations,
such as setup and hold slack, and for the correct functionality
of the core and each peripheral. Since no timing violations
were reported and the system performed as expected, we
concluded that verification was successfull.

TABLE II
FUNCTIONAL AND TIMING TESTS RESULTS

Unit RTL Log. Netlist | Phy. Netlist
UART - with bit parity PASSED PASSED PASSED
UART - without bit parity | PASSED PASSED PASSED
SPI - half duplex PASSED PASSED PASSED
SPI - full duplex PASSED PASSED PASSED
QSPI PASSED PASSED PASSED

We also sampled the data packets sent by the UVM compo-
nents to analyse the coverage of each test (except for GPIO,
since every pin is already verified individually). This way we
can guarantee that the design has been thoroughly tested. Table
IIT shows coverage results.

During logic synthesis a few reports were generated about
timing properties. These reports showed that timing was met.
Table IV shows the slack results.

B. Comparison with other projects

Table V presents a comparison of a few parameters to
show the differences between different implementations of the
Pulpissimo architecture.



TABLE III
TESTS COVERAGE
Unit Coverage
UART - with bit parity 100.00%
UART - without bit parity 100.00%
SPI - half duplex 98.83%
SPI - full duplex 96.51%
QSPI 96.51%
12C 100.00%
TABLE IV
SETUP SLACK RESULTS OF THE LOGIC SYNTHESIS
Setup R2R | R20 120 CG
WNS (ns) 18.67 | 18.72 | 17.98 | 19.83
TNS (ns) 0.00 0.00 0.00 0.00
Violating paths 0 0 0 0

C. Summary report

The physical verification showed no layout errors, so we can
consider the layout ready. Table VI shows the final summary
report generated about the properties and estimations of the
layout.

VI. CONCLUSIONS

This paper presents Puppy, a microprocessor implementa-
tion based on Pulpissimo, designed for low-power IoT appli-
cations with frequency flexibility. Compared to Pulpissimo,
Puppy offers enhanced clock frequency definition and lower
power consumption (at 20 MHz) than similar works in the
same technology node. Synthesis estimations demonstrate
Puppy’s energy-efficient operation, with power consumption
below 14 mW. Its compact total area of 6.68 mm? makes Puppy
a promising solution for various applications. Extensive testing
confirmed the success of Puppy’s synthesis, with no errors or
critical warnings reported. The chip is currently undergoing
fabrication, and will be assembled in QFN56 packages. As
soon as they arrive, they will be tested experimentally.

ACKNOWLEDGMENTS

This project was supported by MCTIC through the PPI-
PNM-SBC project; Pré-Reitoria de P6s-Graduagdo da Uni-
versidade de Sao Paulo; Laboratério de Sistemas Integraveis
Tecnolégico (LSI-TEC); SBMicro and Centro Interdisciplinar
de Tecnologias Interativas da Universidade de Sao Paulo
(CITI-USP), which was essential for the success of the project.

REFERENCES

[1] Electronics Project Focus. [Online]. Available:
https://www.elprocus.com/risc-v-processor/

[2] T. Adegbija, A. Rogacs, C. Patel and A. Gordon-Ross, “Microprocessor
Optimizations for the Internet of Things: A Survey,” in IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 1, pp. 7-20, Jan. 2018, doi: 10.1109/TCAD.2017.2717782.

[3] Caninos Loucos Program. [Online].
https://caninosloucos.org/en/program-en/

[4] 1 D. Rossi, E. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi, G.
Tagliavini, A. Capotondi, P. Flatresse, and L. Benini, “Pulp: A parallel
ultra low power platform for next generation iot applications,” in 2015

IEEE Hot Chips 27 Symposium (HCS), Aug 2015, pp. 1-39

Available:

TABLE V
COMPARISON OF PARAMETERS BETWEEN MICROPROCESSORS

Parameter Artemis | Plink | Puppy
Die area (mm?) 1.57 3.29 6.68
Technology node (nm) 65 65 65
Supply voltage (V) 1.2 1.2 1.2
Clock frequency (MHz) 100 1.0 20
Power (mW) 235 5.2 13.8
TABLE VI
FINAL SUMMARY REPORT
General design information
Design name Pulpissimo
Design status Routed
Instances 714051
Hard Macros 7
Std Cells 713728
Gate count 2.236.605
Pads (non-fillers) 56
Total internal memory 320 KB
Routing layers 8 (ME1 - MES)
Floorplan Information
Total area of std cells 3.02 mm?
Total area of macros 1.72 mm?
Total area of Pad cells 0.94 mm?
Total area of Core 476 mm?2
Total area of Chip 6.68 mm?
Core density (after fillers) 99.52%
Power Information
Total Internal Power 7.4990 mW
Total Switching Power 4.5730 mW
Total Leakage Power 1.7409 mW
Total Power 13.8129 mW

[5] A. Waterman, Y. Lee, D. A. Patterson, K. Asanovic, V. I. U. level Isa, A.
Waterman, Y. Lee, and D. Patterson, “The risc-v instruction set manual,”
2014.

[6] P. D. Schiavone, D. Rossi, A. Pullini, A. Di Mauro, F. Conti and
L. Benini, "Quentin: an Ultra-Low-Power PULPissimo SoC in 22nm
FDX,” 2018 IEEE SOI-3D-Subthreshold Microelectronics Technology
Unified Conference (S3S), Burlingame, CA, USA, 2018, pp. 1-3, doi:
10.1109/S3S.2018.8640145.

[7] M. A. El-Razek, M. B. Abdelhalim and H. H. Issa, "Dynamic power re-
duction of microprocessors for IoT applications,” 2016 28th International
Conference on Microelectronics (ICM), Giza, Egypt, 2016, pp. 297-300,
doi: 10.1109/ICM.2016.7847874.

[8] NRF52840 Datasheet. [Online].
https://infocenter.nordicsemi.com/pdf/nRF52840_PS_v1.1.pdf

[9] PULP Platform. Pulpissimo’s silicon proven designs. [Online]. Available:
https://pulp-platform.org/implementation.html/

[10] M. Gautschi, M. Schaffner, F. K. Giirkaynak and L. Benini, ”An
Extended Shared Logarithmic Unit for Nonlinear Function Kernel Ac-
celeration in a 65-nm CMOS Multicore Cluster,” in IEEE Journal
of Solid-State Circuits, vol. 52, no. 1, pp. 98-112, Jan. 2017, doi:
10.1109/JSSC.2016.2626272.

[11] H. Okuhara et al., A Fully Integrated 5-mW, 0.8-Gbps Energy-Efficient
Chip-to-Chip Data Link for Ultralow-Power IoT End-Nodes in 65-nm
CMOS,” in IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 29, no. 10, pp. 1800-1811, Oct. 2021

[12] PULP Platform. Pulpissimo. [Online]. Available:
platform.org/

Available:

https://pulp-



